New Journal of Physics (Jan 2016)

Single-electron entanglement and nonlocality

  • David Dasenbrook,
  • Joseph Bowles,
  • Jonatan Bohr Brask,
  • Patrick P Hofer,
  • Christian Flindt,
  • Nicolas Brunner

DOI
https://doi.org/10.1088/1367-2630/18/4/043036
Journal volume & issue
Vol. 18, no. 4
p. 043036

Abstract

Read online

Motivated by recent progress in electron quantum optics, we revisit the question of single-electron entanglement, specifically whether the state of a single electron in a superposition of two separate spatial modes should be considered entangled. We first discuss a gedanken experiment with single-electron sources and detectors, and demonstrate deterministic (i. e. without post-selection) Bell inequality violation. This implies that the single-electron state is indeed entangled and, furthermore, nonlocal. We then present an experimental scheme where single-electron entanglement can be observed via measurements of the average currents and zero-frequency current cross-correlators in an electronic Hanbury Brown–Twiss interferometer driven by Lorentzian voltage pulses. We show that single-electron entanglement is detectable under realistic operating conditions. Our work settles the question of single-electron entanglement and opens promising perspectives for future experiments.

Keywords