New Journal of Physics (Jan 2015)

Methods for detecting charge fractionalization and winding numbers in an interacting fermionic ladder

  • Leonardo Mazza,
  • Monika Aidelsburger,
  • Hong-Hao Tu,
  • Nathan Goldman,
  • Michele Burrello

DOI
https://doi.org/10.1088/1367-2630/17/10/105001
Journal volume & issue
Vol. 17, no. 10
p. 105001

Abstract

Read online

We consider a spin-1/2 fermionic ladder with spin–orbit coupling and a perpendicular magnetic field, which shares important similarities with topological superconducting wires. We fully characterize the symmetry-protected topological phase of this ladder through the identification of fractionalized edge modes and non-trivial spin winding numbers. We propose an experimental scheme to engineer such a ladder system with cold atoms in optical lattices, and we present two protocols that can be used to extract the topological signatures from density and momentum-distribution measurements. We then consider the presence of interactions and discuss the effects of a contact on-site repulsion on the topological phase. We find that such interactions could enhance the extension of the topological phase in certain parameters regimes.

Keywords