Hydrology and Earth System Sciences (May 2024)
Assessing downscaling methods to simulate hydrologically relevant weather scenarios from a global atmospheric reanalysis: case study of the upper Rhône River (1902–2009)
Abstract
We assess the ability of two modelling chains to reproduce, over the last century (1902–2009) and from large-scale atmospheric information only, the temporal variations in river discharges, low-flow sequences and flood events observed at different locations of the upper Rhône River catchment, an alpine river straddling France and Switzerland (10 900 km2). The two modelling chains are made up of a downscaling model, either statistical (Sequential Constructive Atmospheric Analogues for Multivariate weather Predictions – SCAMP) or dynamical (Modèle Atmosphérique Régional – MAR), and the Glacier and SnowMelt SOil CONTribution (GSM-SOCONT) model. Both downscaling models, forced by atmospheric information from the global atmospheric reanalysis ERA-20C, provide time series of daily scenarios of precipitation and temperature used as inputs to the hydrological model. With hydrological regimes ranging from highly glaciated ones in its upper part to mixed ones dominated by snow and rain downstream, the upper Rhône River catchment is ideal for evaluating the different downscaling models in contrasting and demanding hydro-meteorological configurations where the interplay between weather variables in both space and time is determinant. Whatever the river sub-basin considered, the simulated discharges are in good agreement with the reference ones, provided that the weather scenarios are bias-corrected. The observed multi-scale variations in discharges (daily, seasonal, and interannual) are reproduced well. The low-frequency hydrological situations, such as annual monthly discharge minima (used as low-flow proxy indicators) and annual daily discharge maxima (used as flood proxy indicators), are reproduced reasonably well. The observed increase in flood activity over the last century is also reproduced rather well. The observed low-flow activity is conversely overestimated, and its variations from one sub-period to another are only partially reproduced. Bias correction is crucial for both precipitation and temperature and for both downscaling models. For the dynamical one, a bias correction is also essential for getting realistic daily temperature lapse rates. Uncorrected scenarios lead to irrelevant hydrological simulations, especially for the sub-basins at high elevation, due mainly to irrelevant snowpack dynamic simulations. The simulations also highlight the difficulty in simulating precipitation dependency on elevation over mountainous areas.