New Journal of Physics (Jan 2018)
Systematic corrections to the Thomas–Fermi approximation without a gradient expansion
Abstract
We improve on the Thomas–Fermi approximation for the single-particle density of fermions by introducing inhomogeneity corrections. Rather than invoking a gradient expansion, we relate the density to the unitary evolution operator for the given effective potential energy and approximate this operator by a Suzuki–Trotter factorization. This yields a hierarchy of approximations, one for each approximate factorization. For the purpose of a first benchmarking, we examine the approximate densities for a few cases with known exact densities and observe a very satisfactory, and encouraging, performance. As a bonus, we also obtain a simple fourth-order leapfrog algorithm for the symplectic integration of classical equations of motion.
Keywords