New Journal of Physics (Jan 2019)

Device-independent certification of one-shot distillable entanglement

  • Rotem Arnon-Friedman,
  • Jean-Daniel Bancal

DOI
https://doi.org/10.1088/1367-2630/aafef6
Journal volume & issue
Vol. 21, no. 3
p. 033010

Abstract

Read online

Entanglement sources that produce many entangled states act as a main component in applications exploiting quantum physics such as quantum communication and cryptography. Realistic sources are inherently noisy, cannot run for an infinitely long time, and do not necessarily behave in an independent and identically distributed manner. An important question then arises—how can one test, or certify, that a realistic source produces high amounts of entanglement? Crucially, a meaningful and operational solution should allow us to certify the entanglement which is available for further applications after performing the test itself (in contrast to assuming the availability of an additional source which can produce more entangled states, identical to those which were tested). To answer the above question and lower bound the amount of entanglement produced by an uncharacterised source, we present a protocol that can be run by interacting classically with uncharacterised (but not entangled to one another) measurement devices used to measure the states produced by the source. A successful run of the protocol implies that the remaining quantum state has high amounts of one-shot distillable entanglement. That is, one can distill many maximally entangled states out of the single remaining state. Importantly, our protocol can tolerate noise and, thus, certify entanglement produced by realistic sources. With the above properties, the protocol acts as the first ‘operational device-independent entanglement certification protocol’ and allows one to test and benchmark uncharacterised entanglement sources which may be otherwise incomparable.

Keywords