Journal of Functional Foods (Jul 2022)
Short-term lingonberry feeding is associated with decreased insulin levels and altered adipose tissue function in high-fat diet fed C57BL/6J mice
Abstract
Intact adipose tissue function is essential to maintain glucose and lipid homeostasis. To study the impact of altered adipose tissue function on whole-body metabolism, diet-induced obesity in mice is frequently used as a model organism. In the current study, we have examined health-promoting effects of a lingonberry supplemented diet. We found C57BL/6J mice fed a high-fat diet supplemented with lingonberry for 4 days to have significantly lowered body-weight gain, adipose tissue expansion, and reduced insulin levels, compared to mice fed an isocaloric high-fat diet. RNA-Seq analysis of epididymal adipose tissue revealed differential expression of genes related to mitochondria fission (Mief1, Dnm1, Vps35, and Opa1). Further, we detected increased gene expression and phosphorylation of perilipin-1 (pS522), and increased lipolysis in primary adipocytes from lingonberry-fed mice. Together, these data pinpoint that beneficial effects of a lingonberry enriched diet are rapidly detectable and that the adipose tissue constitutes a target for these effects.