Financial Innovation (Jul 2019)
Stock market and macroeconomic variables: new evidence from India
Abstract
Abstract Understanding the relationship between macroeconomic variables and the stock market is important because macroeconomic variables have a systematic effect on stock market returns. This study uses monthly data from India for the period from April 1994 to July 2018 to examine the long-run relationship between the stock market and macroeconomic variables. The empirical findings suggest that standard cointegration tests fail to identify any relationship among these variables. However, a transformation that extracts the actual functional relationship between these variables using the alternating conditional expectations algorithm of (J Am Stat Assoc 80:580–598, 1985) identifies strong evidence of cointegration and indicates nonlinearity in the long-run relationship. Further, the continuous partial wavelet coherency model identifies strong coherency at a lower frequency for the transformed variables, establishing the fact that the long-run relationship between stock prices and macroeconomic variables in India is nonlinear and time-varying. This evidence has far-reaching implications for understanding the dynamic relationships between the stock market and macroeconomic variables.
Keywords