New Journal of Physics (Jan 2017)

Heterogeneous nucleation of pits via step pinning during Si(100) homoepitaxy

  • E N Yitamben,
  • R E Butera,
  • B S Swartzentruber,
  • R J Simonson,
  • S Misra,
  • M S Carroll,
  • E Bussmann

DOI
https://doi.org/10.1088/1367-2630/aa9397
Journal volume & issue
Vol. 19, no. 11
p. 113023

Abstract

Read online

Using scanning tunneling microscopy (STM), we investigate oxide-induced growth pits in Si thin films deposited by molecular beam epitaxy. In the transition temperature range from 2D adatom islanding to step-flow growth, systematic controlled air leaks into the growth chamber induce pits in the growth surface. We show that pits are also correlated with oxygen-contaminated flux from Si sublimation sources. From a thermodynamic standpoint, multilayer growth pits are unexpected in relaxed homoepitaxial growth, whereas oxidation is a known cause for step pinning, roughening, and faceting on elemental surfaces, both with and without growth flux. Not surprisingly, pits are thermodynamically metastable and heal by annealing to recover a smooth periodic step arrangement. STM reveals new details about the pits’ atomistic origins and growth dynamics. We give a model for heterogeneous nucleation of pits by preferential adsorption of Å-sized oxide nuclei at intrinsic growth antiphase boundaries, and subsequent step pinning and bunching around the nuclei.

Keywords