Journal of Nutritional Science (Jan 2018)

Improvement of glucose and lipid metabolism via mung bean protein consumption: clinical trials of GLUCODIA™ isolated mung bean protein in the USA and Canada

  • Mitsutaka Kohno,
  • Hideo Sugano,
  • Yuhko Shigihara,
  • Yoshiaki Shiraishi,
  • Takayasu Motoyama

DOI
https://doi.org/10.1017/jns.2017.68
Journal volume & issue
Vol. 7

Abstract

Read online

The aim of the present study was to confirm the effects of a commercially available mung bean protein isolate (GLUCODIA™) on glucose and lipid metabolism. The main component of GLUCODIA™ is 8S globulin, which constitutes 80 % of the total protein. The overall structure of this protein closely resembles soyabean β-conglycinin, which accounts for 20 % of total soya protein (soya protein isolate; SPI). Many physiological beneficial effects of β-conglycinin have been reported. GLUCODIA™ is expected to produce beneficial effects with fewer intakes than SPI. We conducted two independent double-blind, placebo-controlled clinical studies. In the first (preliminary dose decision trial) study, mung bean protein was shown to exert physiological beneficial effects when 3·0 g were ingested per d. In the second (main clinical trial) study, mung bean protein isolate did not lower plasma glucose levels, although the mean insulin level decreased with consumption of mung bean protein. The homeostatic model assessment of insulin resistance (HOMA-IR) values significantly decreased with mung bean protein. The mean TAG level significantly decreased with consumption of mung bean protein isolate. A significant increase in serum adiponectin levels and improvement in liver function enzymes were observed. These findings suggest that GLUCODIA™ could be useful in the prevention of insulin resistance and visceral fat accumulation, which are known to trigger the metabolic syndrome, and in the prevention of liver function decline.

Keywords