Applied Computing and Informatics (Jan 2018)
Enabling distributed intelligence assisted Future Internet of Things Controller (FITC)
Abstract
The unprecedented prevalence of ubiquitous sensing will revolutionise the Future Internet where state-of-the-art Internet-of-Things (IoT) is believed to play the pivotal role. In the fast forwarding IoT paradigm, hundreds of billions of things are estimated to be deployed which would give rise to an enormous amount of data. Cloud computing has been the prevailing choice for controlling the connected things and the data, and providing intelligence based on the data. But response time and network load are on the higher side for cloud based solutions. Recently, edge computing is gaining growing attention to overcome this by employing rule-based intelligence. However, requirements of rules do not scale well with the proliferation of things. At the same time, rules fail in uncertain events and only offer pre-assumed intelligence. To counter this, this paper proposes a novel idea of leveraging the belief-network with the edge computing to utilize as an IoT edge-controller the aim of which is to offer low-level intelligence for IoT applications. This low-level intelligence along with cloud-based intelligence form the distributed intelligence in the IoT realm. Furthermore, a learning approach similar to reinforcement learning has been proposed. The approach, i.e. enabling a Future IoT Controller (FITC) has been verified with a simulated SmartHome scenario which proves the feasibility of the low-level intelligence in terms of reducing rules domination, faster response time and prediction through learning experiences at the edge.
Keywords