Shipin gongye ke-ji (Sep 2023)

Influences of Xanthan Gum and Guar Gum on Gelation Properties of Chicken Blood

  • Huilin ZHANG,
  • Jie LIN,
  • Hua ZHENG,
  • Shaozong WU,
  • Wenbo LIU,
  • Jiawei HU,
  • Zeqi LIU,
  • Yin HUANG

DOI
https://doi.org/10.13386/j.issn1002-0306.2022120090
Journal volume & issue
Vol. 44, no. 18
pp. 106 – 114

Abstract

Read online

To improve the gel quality of chicken blood, a by-product of concentrated slaughter, the effects of different concentrations and formulations of xanthan gum (XG) and guar gum (GG) on the gel properties of chicken blood were investigated using the indices of water retention, texture, and rheological properties, as well as analysis of molecular interactions and sensory scores. The results showed that while individual treatment with either XG or GG improved the water-holding capacity of the chicken blood gel, the action of XG was superior. Addition of 4.0 g/L of XG resulted in a cooking loss rate of 10.02%, centrifugation loss of 12.73%, and syneresis rate of 10.96% (at 48 h), while the hardness, cohesiveness, gelation, mastication, and recovery of the gel were decreased. Addition of 6.0 g/L of GG significantly improved the textural properties of the gel, resulting in a hardness of 366.95 N, elasticity of 0.94 mm, cohesiveness of 0.77, adhesiveness of 281.94, masticatory value of 263.72 mJ, and recovery of 0.25. Analysis of dynamic rheology and intermolecular forces showed that the gelation transformation of the chicken blood gel system was mainly determined by the elastic response. The formulation of XG and GG had a synergistic effect in stabilizing the chicken blood gel, with strengthened ionic bonds (from 29.18% to 32.62%) and hydrogen bonds (from 2.48% to 6.43%), reduced hydrophobic force (from 22.68% to 16.28%), increased water-holding capacity of the gel, and enhanced gel stability. The addition of 4.0 g/L of formulated colloid (XG and GG in a ratio of 7:3) to chicken blood resulted in optimal water retention and texture, together with high sensory scores of the gel.

Keywords