BMC Veterinary Research (Dec 2019)

Methicillin-resistant Staphylococcus aureus and glycopeptide-resistant enterococci in fecal samples of birds from South-Eastern Poland

  • Jolanta Kutkowska,
  • Anna Turska-Szewczuk,
  • Marek Kucharczyk,
  • Halina Kucharczyk,
  • Joanna Zalewska,
  • Teresa Urbanik-Sypniewska

DOI
https://doi.org/10.1186/s12917-019-2221-1
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background The incidence of human infection and colonization with methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) has increased in the recent years. Environmental sources, including bird droppings, might play an important role as resistance reservoirs. Results Fresh fecal samples were collected from rooks and wild-living birds during the autumn-winter period of 2016/2017, and tested for the presence of bacteria associated with human diseases. Besides bacteria representing the genera Enterococcus, Campylobacter, Escherichia, and Staphylococcus, Enterobacter, Citrobacter, Proteus, Hafnia, and Pseudomonas were also identified. The susceptibility of S. aureus and Enterococcus spp. isolates to methicillin, and vancomycin and teicoplanin, respectively, was analyzed to assess the avian wildlife as a reservoir of MRSA and VRE strains. Twenty-two percent of all S. aureus isolates were methicillin-resistant. These strains were screened by polymerase chain reaction (PCR), using the most widely used primer sets specific for the mecA gene. Twenty percent of all Enterococcus strains were phenotypically vancomycin-resistant. The presence of van resistance genes in these strains was investigated by PCR using vanA and vanB gene-specific primers. A good correlation between mecA gene detection and disc diffusion data was observed, while some discrepancy was noted between the PCR data and the vancomycin/teicoplanin phenotypic resistance pattern. The incidence of strains resistant to methicillin and glycopeptide antibiotics in wild-living birds was twice that in rooks. Conclusions The study suggests that rooks from urban areas and passerine birds from the natural habitat carry antibiotic-resistant Enterococcus spp. and S. aureus strains, probably reflecting the presence of such isolates in the environmental food sources.

Keywords