علوم و تکنولوژی پلیمر (Oct 2020)

An Experimental Study on Flexural Properties of Jute Fiber/Aluminum Laminates

  • Sara Alirezaei Shahraki,
  • Soheil Dariushi,
  • Mohammad Hosain Beheshty

DOI
https://doi.org/10.22063/jipst.2020.1753
Journal volume & issue
Vol. 33, no. 4
pp. 351 – 362

Abstract

Read online

Hypothesis: Fiber metal laminates (FMLs) are made up of fibrous composites layers and metal sheets that are stacked alternatively and joined together with polymeric resin. The purpose of this study is to investigate the flexural properties of environmental friendly and cost-effective fiber metal laminates. In recent decades, natural fiber composites have become popular due to their recyclability, renewability and low cost, and their applications in various industries are growing. Combining natural composites with aluminum layers and manufacturing fiber metal laminates led to improved mechanical properties and increased resistance to environmental factors such as moisture, heat and sunlight.Methods: Jute fiber-based fiber metal laminates and composites containing jute fibers were made using epoxy and vinyl ester resins by hand lay-up method. The flexural properties of composites and fiber metal laminates were investigated using a three-point bending test. After performing mechanical tests, scanning electron microscopy images were prepared to check the fracture surface. For comparison, similar samples were made and tested using glass fibers.Findings: The results of the tests showed that the use of aluminum layers along with composites containing jute fibers increases the flexural modulus and the ultimate strength of the samples. Samples made with vinyl ester resin had better bending properties than epoxy matrix composites due to proper bonding between jute fibers and vinyl ester. The vinyl ester resin could penetrate into the void space inside the jute fibers. In addition, scanning electron microscopy images showed that due to the rough surface and special form of jute fibers, better adhesion was created between the jute fibers with vinyl ester resin and epoxy in comparison with glass fibers.

Keywords